2 phương thức thức tìm ƯỚC SỐ và BỘI SỐ (sử dụng công thức & Casio fx)

Rate this post

Qua vừa rồi những những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua nên phải:

  • Nêu được định nghĩa của ƯỚC SỐ và BỘI SỐ của một trong những tự động hóa nhiên, rõ được viết tập hợp những ước, những bội.
  • rõ được phương thức thức test một trong những tự động hóa nhiên dành so với trước có là ước hoặc là bội của một trong những tự động hóa nhiên dành so với trước hoặc là không.
  • tìm kiếm ra ước và bội trong những trường hợp đơn thuần và giản dị (số nhỏ).

I. ƯỚC SỐ và BỘI SỐ là gì?

dành so với hai số tự động hóa nhiên ab. Nếu a chia không vẫn vẫn dành so với b thì toàn bộ tổng thể chúng ta nói b là ước của a hoặc a là bội của b. đơn thuần và giản dị vậy thôi !

  • Tập hợp toàn bộ những ước của một trong những a được kí hiệu là U(a)
  • Tập hợp toàn bộ những bội của một trong những a được kí hiệu là B(a)

Ví dụ:

$U(tám)={một, 2, bốn, tám}$

$B(9)={9, 18, 27, 36, 45, 54, …}$

II. phương thức thức viết tập hợp ƯỚC và BỘI trong trường hợp tổng quát

  • Tập hợp những ước của a là $U(a)={x in N^* | a vdots x}$
  • Tập hợp những bội của b là $B(b)={x in N | x vdots b}$ hoặc $B(b)={b.n | n in N}$ hoặc $B(b)={0, b, 2b, 3b, 4b, …}$

III. những bước tìm ước của một trong những tự động hóa nhiên

Giả sử toàn bộ tổng thể chúng ta hãy thử tìm toàn bộ những Ước số của a

#một. Phương pháp Toán học

Để tìm những ước của một trong những tự động hóa nhiên a thì toàn bộ tổng thể chúng ta thử chia a lần lượt dành so với một, 2, 3, bốn, 5, 6, …, tới a

=> a chia không vẫn vẫn dành so với số nào thì số đó là ước của a

#2. Phương pháp sử dụng máy tính CASIO fx-580VN X

Bước một. Thiết lập chỉ sử dụng duy nhất một hàm f(x)Bước 2. Chọn phương thức tính toán Table

Bước 3. Nhập $f(x)=frac{a}{x}$

Bước bốn. Nhập Start =một, End=a, Step = một

tại số lượng giới hạn về kĩ năng tạo bảng nên toàn bộ tổng thể chúng ta chỉ thử phương thức thức tạo nên quá quá quá tốt nhất 45 giá trị trên một lần.

Nói như vậy tức là nếu $avàgt;45$ thì những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua hãy thử triển khai nhiều lần, vẫn rõ ràng và đơn cử là bao nhiêu lần thì nó sẽ tùy từng giá trị của a (a càng lớn thì số lần triển khai những nhiều).

Bước 5. Nhấn phím =

xem giá tiền trị tìm kiếm ra, giá trị x nào dành so với f(x) là số tự động hóa nhiên thì giá trị đó đó là ước của a

Ví dụ: Tìm toàn bộ những ước của 60

phương thức thức một: Sử dụng phương phép Toán học

60 chia không vẫn vẫn dành so với một, 2, 3, bốn, 5, 6, 12, 15, 20, 30, 60

=> Vậy $U(60)={một, 2, 3, bốn, 5, 6, 12, 15, 20, 30, 60}$

phương thức thức 2: Sử dụng phương pháp sử dụng máy tính CASIO fx-580VN X

Bước một. Thiết lập chỉ sử dụng duy nhất một hàm f(x)

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (1)

Bước 2. Chọn phương thức tính toán Table

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (2)

Bước 3. Nhập hàm f(x)

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (3)

Bước bốn. Nhập Start = một, End = 45, Step = một

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (4)

Bước 5. Nhấn phím =

tim-uoc-so-bang-may-tinh-casio-1

Bước 5 plus. Nhập Start = 45, End = 60, Step = một

NOTE: Như mình có note trên phía trên, tại a > 45 nên ta phải triển khai bước này lần nữa.

tim-uoc-so-bang-may-tinh-casio-2

=> Vậy $U(60)={một, 2, 3, bốn, 5, 6, 12, 15, 20, 30, 60}$

IV. những bước tìm bội của một trong những tự động hóa nhiên

Giả sử toàn bộ tổng thể chúng ta hãy thử tìm những bội của a

#một. Phương pháp Toán học

Để tìm những bội của một trong những tự động hóa nhiên a toàn bộ tổng thể chúng ta sẽ lần lượt nhân a với một, 2, 3, …

#2. Phương pháp sử dụng máy tính CASIO fx-580VN X

Bước một. Thiết lập chỉ sử dụng duy nhất một hàm f(x)

Bước 2. Chọn phương thức tính toán Table

Bước 3. Nhập hàm $f(x)=ax$

Bước bốn. Nhập Start =một, End=Số lượng bội hãy thử tìm, Step = một

tại số lượng giới hạn về kĩ năng tạo bảng toàn bộ tổng thể chúng ta chỉ thử phương thức thức tạo nên quá quá quá tốt nhất 45 giá trị trên một lần

Nói như vậy tức là nếu số lượng bội hãy thử tìm to ra thêm 45 thì những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua hãy thử triển khai nhiều lần, bao nhiêu lần tùy từng số lượng bội hãy thử tìm, số lượng càng lớn thì số lần triển khai những nhiều

Bước 5. Nhấn phím =

Ví dụ: Tìm sáu bội trước không vẫn vẫn của 12

Sử dụng phương pháp Toán học

$12.một=12, 12.2=24, 12.3=36, 12.bốn=48, 12.5=60, 12.6=72$

Vậy $B(12)={12, 24, 36, 48, 60, 72}$

Sử dụng phương pháp sử dụng máy tính CASIO fx-580VN X

Bước một. Thiết lập chỉ sử dụng duy nhất một hàm f(x)

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (1)

Bước 2. Chọn phương thức tính toán Table

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (2)

Bước 3. Nhập hàm $f(x)=12x$

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (7)

Bước bốn. Nhập Start =một, End=6, Step = một

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (8)

Bước 5. Nhấn phím =

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (9)

cach-tim-uoc-va-boi-cua-mot-so-tu-nhien (10)

Vậy $B(12)={12, 24, 36, 48, 60, 72}$

V. một trong những theo dõi về Ước số và Bội số

  • Tập hợp ước của một trong những tự động hóa nhiên là tập hợp hữu hạn.
  • Tập hợp bội của một trong những tự động hóa nhiên là vô hạn.
  • Số một là ước của mọi số tự động hóa nhiên.
  • Số tự động hóa nhiên thứ hai 0 là ước của nó.
  • Số 0 là bội của mọi số tự động hóa nhiên.
  • Không tồn tại bất kì số nào là ước của số 0

VI. Lời kết

Như vậy những những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua thử phương thức thức thấy: việc tìm bội số của một trong những tự động hóa nhiên bất kỳ không tồn tại gì trở ngại, nhưng việc tìm ước thì lại thứ hai, không phải lúc nào toàn bộ tổng thể chúng ta cũng đơn thuần và giản dị tìm. quan trọng là trong những lúc số hãy thử tìm có mức giá trị lớn.

Nếu triển khai theo một trong hai phương thức thức mà tôi vừa trình diễn thì tốn tương đối nhiều thời hạn và công sức của con người. Vậy nên việc này sẽ tiến hành xử lý trong bài phân tích một trong những ra thừa số nguyên tố, những những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua nhớ tìm xem qua trên blog nhé.

ước muốn là bào viết này sẽ hữu ích với những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua. Xin Chào thân ái và hẹn hội ngộ những những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua trong những nội dung bài viết tiếp theo !

CTV: Nhựt Nguyễn – Blogchiasekienthuc.com

nội dung bài viết đạt: 5/5 sao – (Có một lượt định hình và nhận định)

Note: vừa rồi hữu ích với những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua chứ? tránh quên định hình và nhận định nội dung bài viết, like và sẻ chia dành so với những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua bè và người thân trong gia đình của những những những những những những những những bạn xem qua xem qua xem qua xem qua xem qua nhé !

Written by 

Leave a Reply

Your email address will not be published.